
A note on angular momentum and sums over classical paths

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 L127

(http://iopscience.iop.org/0301-0015/6/9/001)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/9
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math., Nucl. Gen., Vol. 6, September 1973. Printed in Great Britain. @ 1973 
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A note on angular momentum and sums over classical paths 
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S1 IWB, UK 

Received 20 July 1973 

Abstract. The spherical top propagator and spectral operator kernel for all spins are 
evaluated in terms of new rotational coordinates that are related to the Euler angles 
in a simple way. Both operator kernels are expressible exactly as sums over classical 
paths. The angular momentum wavefunctions are single-valued functions of the new 
rotational coordinates for all values of j. 

A path integral for spin, based on Feynman’s formulation of quantum mechanics, has 
been given by Schulman (1968). The classical model which is quantized by path inte- 
gration is the spherically symmetric top described by Euler angles. The quantum- 
mechanical propagator which results from this procedure propagates all spins and, 
rather surprisingly, contains only classical-path terms. More recently Norcliffe (1972) 
has evaluated the spectral operator kernel for the spherical top and it too is expressible 
exactly as a sum over classical paths. These two treatments not only relate the classical 
and quantum-mechanical theories of angular momentum and spin in a direct way, but 
they also provide a description of spin in terms of rotational coordinates without 
involving double-valued wavefunctions explicitly. 

If one expresses the J2 operator in terms of Euler angles, then in this representation 
the angular momentum wavefunctions corresponding to integer values of j are single 
valued. The wavefunctions corresponding to half-integer j are double valued. This 
double valuedness is regarded as unphysical and is one difficulty of treating angular 
momentum in terms of rotational coordinates. In path-integral theories, where one is 
dealing directly with the paths, the role of boundary conditions is played by phase 
factors that are associated with each path contribution. For the spherical top the 
phases associated with the paths that give rise to half-integer values o f j  are different to 
those for integer values (see Schulman 1968, equation (4.19) and Norcliffe 1972 
equations (18) and (22)). One might argue that the phases associated with half-integer 
values o f j  are also unphysical because they too would lead to double-valued wave- 
functions. In this letter we consider the spherical top in a new representation in which 
the propagator and the spectral operator kernel for all spins can be expressed once 
again as sums over classical paths, but where the respective path contributions are each 
added with the seme overall phase. The corresponding angular momentum wave- 
functions are also single valued for all values of j in this representation. 

Any rotation of a rigid body may be specified by three Euler angles (E@/)  or by four 
Euler parameters (hpvp) (Synge 1960). The Euler parameters satisfy 
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and are related to the Euler angles as follows 

= s i n @ s i n ( y ) ,  v = cosQsin(?) 

p = sin(:)cosr+), p = c o s ( ~ c o s ~ ~ ) .  

Any point on the surface of a unit hypersphere in four dimensions thus specifies a 
rotation uniquely, and instead of the Euler angles we choose as rotational coordinates 
the angles xyz, 0 < x ,  y < 277, 0 < z < 477, for which x = ( y  +a) /2 ,  y = (y - 412,  
3 = 812 and 

v = coszsinx 
p = cos z cos x .  

Such a parametrization of the unit hypersphere has been used by Kuznetsov (1967) in 
connection with the O(4) symmetry of the hydrogen atom. 

X = sin z siny, 
(3) 

p = sinzcosy,  

In terms of the angles xyz the spherical-top lagrangian function is given by 
L = 21(i2cos2z +P2sin2z + 22) (4) 

where 1 is the moment of inertia of the top about any axis through its centre of mass. 
The generalized momenta are given by p z  = aL/ai etc, and the corresponding hamil- 
tonian function is 

H = 1 P? -(7+-2-+pz). Pi 81 cos z sin z 
A least-action principle indicates that the trajectories on the hypersphere are geodesics 
so that as the top rotates in real space, the point R = (Apvp) traces out a great circle on 
the hypersphere. Between two points on the hypersphere the following action functions 
take the values : 

c = O , f  1,.  . . (6) I s:oLdt  = 2 1 ( ~  + 2 ~ c ) ~  = S,(R,?; R,,?,) 

( ~ ~ ~ c l x + p ~ d y + ~ ~ c l ~ )  = 2 k / w  +27i~j  = S,,(R,Ro) 1:. 
where w is the angle between the two four-vectors Ro and R ,  and k is the magnitude of 
the classical angular momentum given by H = k2/2Z. The actions are multivalued 
because there is more than one classical trajectory joining two points on the hyper- 
sphere. 

To obtain the propagator one could path integrate the top knowing the lagrangian 
function (4). We obtain the propagator here by summing over its stationary states. 
First we consider the quantum mechanics of the top in terms of the new rotational 
coordinates. The hamiltonian operator, H = J2/2Z, in terms of xyz becomes 

H =  -!?( -sin z cos z - + - - 1 a a 1 a 2  1 82 
(7) 8 1  sin z cos z az 

where A is the Laplace-Beltrami operator on the hypersphere (see for example Pajas 
and Raczka 1968). The eigenvalues of A, corresponding to single-valued eigenfunctions, 
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are of the form 4j( j+ I ) , j  = 0, &, 1, . . .. The eigenfunctions are just the hyperspherical 
harmonics and from the addition theorem which they satisfy (eg Bander and Itzykson 
1966) it follows that the kernel of the projection operator Pj onto the levelj is 

2j+ 1 sin(2j+ 1)w 
(RIPjlRO) = 2 2n sin w 

The propagator of the spherical top for all spins is thus 

2j+l  sin(2j+l)w -ih =c- e x p j ( j +  l)(t- to). 
I 2n2 sin w 21  (9) 

After some analysis, and use of the Poisson summation formula (cf Schulman 1968 
equation (3.7)), the expression for the propagator finally emerges as a sum over 
classical paths 

1 4(w +2m)exp{ifi(t - t0)/8 I} I i 
= c  e = - - 0 3  sin w Grin(, - roJt  G exp -S,(R, t ;R, , t )  . (10) 

All the classical path contributions are added together with the same overall phase. 
Similarly if we evaluate the spectral operator kernel we see that 

is also a classical path sum where all the terms contribute with the same overall phase 
factor lcl/c for each path. 

The reason why only one overall phase factor in the path sums (10) and (11) is 
needed for each operator stems from the fact that the wavefunctions (hyperspherical 
harmonics) for all values o f j  are single-valued functions over the hypersphere. Indeed, 
the theory of total angular momentum can be formulated without the need for spinors 
if the rotational coordinates XJJZ are used. 
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